Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms

نویسندگان

  • M. Affenzeller
  • S. Wagner
چکیده

In terms of goal orientedness, selection is the driving force of Genetic Algorithms (GAs). In contrast to crossover and mutation, selection is completely generic, i.e. independent of the actually employed problem and its representation. GA-selection is usually implemented as selection for reproduction (parent selection). In this paper we propose a second selection step after reproduction which is also absolutely problem independent. This self-adaptive selection mechanism, which will be referred to as offspring selection, is closely related to the general selection model of population genetics. As the problemand representation-specific implementation of reproduction in GAs (crossover) is often critical in terms of preservation of essential genetic information, offspring selection has proven to be very suited for improving the global solution quality and robustness concerning parameter settings and operators of GAs in various fields of applications. The experimental part of the paper discusses the potential of the new selection model exemplarily on the basis of standardized real-valued test functions in high dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

A Self-adaptive Model for Selective Pressure Handling within the Theory of Genetic Algorithms

In this paper we introduce a new generic selection method for Genetic Algorithms. The main difference of this selection principle in contrast to conventional selection models is given by the fact that it considers not only the fitness of an individual compared to the fitness of the total population in order to determine the possibility of being selected. Additionally, in a second selection step...

متن کامل

The Influence of Population Genetics for the Redesign of Genetic Algorithms

This contribution considers recent results of population genetics in order to present generic extensions to the general concept of a Genetic Algorithm (GA). Consequently a new model for self-adaptive selection pressure steering is presented (Offspring Selection), taking advantage of the interplay between directed genetic drift and selection, resulting in a new class of Genetic Algorithms. As a ...

متن کامل

Application of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives

Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...

متن کامل

Application of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives

Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004